复杂度分析(下)

复杂度分析除了复杂度分析(上)中介绍的内容,还有这四个知识点,分别是:最好情况时间复杂度最坏情况时间复杂度平均情况时间复杂度均摊时间复杂度

最好、最坏情况时间复杂度

1
2
3
4
5
6
7
8
9
10
11
12
// n 表示数组 array 的长度
int find(int[] array, int n, int x) {
int i = 0;
int pos = -1;
for (; i < n; ++i) {
if (array[i] == x) {
pos = i;
break;
}
}
return pos;
}

这段代码的执行时间和变量 x 有关,变量 x 可能出现在数组的任意位置。如果数组中第一个元素正好是要查找的变量 x,那就不需要继续遍历剩下的 n-1 个数据了,那时间复杂度就是 O(1)。但如果数组中不存在变量 x,那我们就需要把整个数组都遍历一遍,时间复杂度就成了 O(n)。不同的情况下,这段代码的时间复杂度是不一样的。

最好情况时间复杂度就是,在最理想的情况下,执行这段代码的时间复杂度。就如上面代码中要查找的变量 x 正好在数组的第一个元素,这时候的时间复杂度就是最好情况时间复杂度。

同理,最坏情况时间复杂度就是,在最糟糕的情况,执行这段代码的时间复杂度。就如上面代码的数组中没有要查找的变量 x,这时候要把整个数组都便利一遍才行,这种情况下对应的就是最坏情况时间复杂度。

平均情况时间复杂度

最好情况时间复杂度和最坏情况时间复杂度对应的都是极端情况下的都是极端情况下的代码复杂度,发生的概率其实并不大。为了更好地表示平均情况下的复杂度,我们需要引入另一个概念:平均情况时间复杂度。

还是以上面的代码为例子。要查找的变量 x 要么在数组里,要么就不在数组里。这两种情况对应的概率统计起来很麻烦,为了方便理解,我们假设在数组中与不在数组中的概率都为 1/2。另外,要查找的数据出现在 0~n-1 这 n 个位置的概率也是一样的,为 1/n。所以,根据概率乘法法则,要查找的数据出现在 0~n-1 中任意位置的概率就是 1/(2n)。

如果我们把每种情况发生的概率也考虑进去,那平均时间复杂度的计算过程就变成了这样:

这个值就是概率论中的加权平均值,也叫作期望值,所以平均时间复杂度的全称应该叫加权平均时间复杂度或者期望时间复杂度

引入概率之后,前面那段代码的加权平均值为 (3n+1)/4。用大 O 表示法来表示,去掉系数和常量,这段代码的加权平均时间复杂度仍然是 O(n)。

实际上,在大多数情况下,我们并不需要区分最好、最坏、平均情况时间复杂度三种情况。只有同一块代码在不同的情况下,时间复杂度有量级的差距,才会使用这三种复杂度表示法来区分。

均摊时间复杂度

均摊时间复杂度,它对应的分析方法是摊还分析(或者叫平摊分析)。均摊时间复杂度,听起来跟平均时间复杂度有点儿像,这两个概念确实非常容易弄混。

大部分情况下,我们并不需要区分最好、最坏、平均三种复杂度。平均复杂度只在某些特殊情况下才会用到,而均摊时间复杂度应用的场景比它更加特殊、更加有限。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// array 表示一个长度为 n 的数组
// 代码中的 array.length 就等于 n
int[] array = new int[n];
int count = 0;
void insert(int val) {
if (count == array.length) {
int sum = 0;
for (int i = 0; i < array.length; ++i) {
sum = sum + array[i];
}
array[0] = sum;
count = 1;
}
array[count] = val;
++count;
}

这段代码实现了一个往数组中插入数据的功能。当数组满了之后,也就是代码中的 count == array.length 时,我们用 for 循环遍历数组求和,将求和之后的 sum 值放到数组的第一个位置,然后再将新的数据插入。但如果数组一开始就有空闲空间,则直接将数据插入数组。

我们用刚讲到的三种时间复杂度的分析方法来分析一下。

最理想的情况下,数组中有空闲空间,我们只需要将数据插入到数组下标为 count 的位置就可以了,所以最好情况时间复杂度为 O(1)。最坏的情况下,数组中没有空闲空间了,我们需要先做一次数组的遍历求和,然后再将数据插入,所以最坏情况时间复杂度为 O(n)。

我们再通过概率论的方法来分析下平均时间复杂度。

假设数组的长度是 n,在数组有空闲空间可以插入的时候,根据数据插入的位置的不同,我们可以分为 n 种情况,每种情况的时间复杂度是 O(1)。除此之外,在数组没有空闲空间时插入一个数据,这个时候的时间复杂度是 O(n)。而且,这 n+1 种情况发生的概率一样,都是 1/(n+1)。所以,根据加权平均的计算方法,我们求得的平均时间复杂度就是:

对于 insert() 函数来说,O(1) 时间复杂度的插入和 O(n) 时间复杂度的插入,出现的频率是非常有规律的,而且有一定的前后时序关系,一般都是一个 O(n) 插入之后,紧跟着 n-1 个 O(1) 的插入操作,循环往复。

针对这种特殊的场景,我们引入了一种更加简单的分析方法:摊还分析法,通过摊还分析得到的时间复杂度我们起了一个名字,叫均摊时间复杂度

使用摊还分析法来分析算法的均摊时间复杂度:

还是以上面的代码为例子。每一次 O(n) 的插入操作,都会跟着 n-1 次 O(1) 的插入操作,所以把耗时多的那次操作均摊到接下来的 n-1 次耗时少的操作上,均摊下来,这一组连续的操作的均摊时间复杂度就是 O(1)。这就是均摊分析的大致思路。

均摊时间复杂度和摊还分析应用场景比较特殊,所以我们并不会经常用到。总结一下它们的应用场景就是:

对一个数据结构进行一组连续操作中,大部分情况下时间复杂度都很低,只有个别情况下时间复杂度比较高,而且这些操作之间存在前后连贯的时序关系,这个时候,我们就可以将这一组操作放在一块儿分析,看是否能将较高时间复杂度那次操作的耗时,平摊到其他那些时间复杂度比较低的操作上。而且,在能够应用均摊时间复杂度分析的场合,一般均摊时间复杂度就等于最好情况时间复杂度。

均摊时间复杂度就是一种特殊的平均时间复杂度,没必要花太多精力去区分它们。我们最应该掌握的是它的分析方法,摊还分析。至于分析出来的结果是叫平均还是叫均摊,这只是个说法,并不重要。

小结

最好情况时间复杂度、最坏情况时间复杂度、平均情况时间复杂度、均摊时间复杂度,之所以有这样的区分是因为同一段代码,在不同输入的情况下,复杂度量级有可能是不一样的。有了这几个概念后,我们可以更加全面地表示一段代码的执行效率。